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What is a good forecast?

Good forecasts have:

 QUALITY: Measure of correspondence
btw forecasts and observations using
mathematical relationship (deterministic
and probabilistic measures)

* VALUE/UTILITY: Measure of benefit
achieved (or loss incurred) through the
use of forecasts

* CONSISTENCY: Correspondence between
a forecast and the forecasters belief with

appropriate representation of forecast
uncertainty

A. H. Murphy 1993
“What is a good forecast ?

Attributes of quality:
= Association

= Accuracy

= Discrimination
= Reliability

= Resolution

— No single score can be

used to summarize a set
of forecasts

An essay on the nature of goodness in weather forecasting”

Weather and Forecasting, 8, 281-293.



Forecast quality on different time ranges

WEATHER FORECASTS
predictability comes from initial
atmospheric conditions

SUB-SEASONAL PREDICTIONS

predictability comes from initial
atmospheric conditions, monitoring the
land/sea/ice conditions, the stratosphere

and other sources
SEASONAL PREDICTIONS

predictability comes primarily from
good sea-surface temperature conditions;
accuracy is dependent on ENSQO state
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Sub-seasonal to seasonal
forecast quality assessment

1. Attributes of deterministic
forecasts (ensemble mean)



Association

e Overall strength of the relationship between the
forecasts and observations

* Linear association is often measured using the
product moment correlation coefficient

> (x,-X)(y, - 9)
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X: forecast y: observation
n: number of (x,y) pairs
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Relationship between past forecast and past obs. anomalies
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Relationship between past forecast and past obs. anomalies
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Accuracy

* Average difference between forecasts and
observations

* Simplest measure is the Mean Error (Bias)

- ME =li(xi' Yi)

X: forecast y: observation n: number of (x,y) pairs



Seasonal forecast example:
JMA 1-month lead precip. fcsts for DJF

Corr. btw (F, O) anoms (against GPCP v2.2)
.C:Nov.  Valid: DJF (1981-2010)

Bias (against GPCPv2.2)
|.C: Nov Valid: DJF (1981-2010)
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Precipitation
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Monthly forecast example:
0, 5, 10 and 15-day lead fcsts for Feb
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Two weeks forecast example:
Y2 month lead precip. fcsts

Correlation between forecast and observed precipitation anomalies
Fortnight 2: Sep, Oct, Nov forecast start months. Hindcasts: 1980-2006

SON m24abc Fortnight 2
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Sub-seasonal to seasonal
forecast quality assessment

2. Attributes of probabilistic
forecasts (derived from
ensemble members)



Discrimination

Conditioning of forecasts on observed outcomes

Addresses the question: Does the forecast differ
given different observed outcomes? Or, can the
forecasts distinguish an event from a non-event?

If the forecast is the same regardless of the
outcome, the forecasts cannot discriminate an
event from a non-event

Forecasts with no discrimination ability are
useless because the forecasts are the same
regardless of what happens



Example:Equatorial Pacific SST anomaly forecasts
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Prob. forecasts conditioned/stratified

Forecast O observations
probability Pr(SST>0)
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Event
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SST>0 not obs
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—> Forecasts do differ given different outcomes
—> Forecast system has discrimination (distinguish event from non-event)



ROC: Relative operating characteristics

Measures discrimination (ability of forecasting system
to detect the event of interest)

Forecast __Observed

Yes No Total
Yes a (Hit) b (False alarm) a+b
No c (Miss) d (Correct rejection) c+d
Total a+c b+d a+b+c+d=n

Hit rate=a/(a+c)

False alarm rate=b/(b+d)

ROC curve: plot of hit versus false-alarm rates for various
prob. thresholds



ROC Curve
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* The ROC curve is constructed by calculating the hit and false-alarm rates

for various probability thresholds
* Area under ROC curve (A) is a measure of discrimination: A=10.79 (prob. of

successfully discriminating a warm (SST>0) from a cold (SST<0) event)



ROC Curve

Steep curve at bottom
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* The ROC curve is constructed by calculating the hit and false-alarm rates

for various probability thresholds

* Area under ROC curve (A) is a measure of discrimination: A= 0.79 (prob. of
successfully discriminating a warm (SST>0) from a cold (SST<0) event)



Important points to remember

The area under the ROC curve will tell us the probability of
successfully discriminating an event from a non event. In other
words, how different the forecast probabilities are for events and non
events

As events and non-events are binary (i.e have 2 possible outcomes)
the probability of correctly discriminating (distinguishing) and event
from a non-event by chance (guessing) is 50% and is represented by
the area below the 45 degrees diagonal line in the ROC plot

ROC is not sensitive to biases in the forecasts

Forecast biases are diagnosed with the reliability diagram



Seasonal forecast example:
1-month lead precip. fcsts for DIJF

ROC Skill Scora. Evank: ativea au pasitiva anomaly
CPTEC: Precipitation (1979-2001) — Data: GPCP v 2.1
lasuad: Mov valid for DJF
Region: Global
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Monthly forecast example:
1-day lead 2mT fcsts for day 2-29 mean

Relative Operating Characteristics

Event : T2m Anomaly Upper Tercile 2—28 day mean (V1403 vs JRAS5)
for 30 years (1981-2010), meam:5

Initial : DJF , Lead time : 2 day
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One to two weeks forecast example:
Northern extratropics

ROC area: 2-metre temperature in the upper tercile
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Two weeks forecast example:
Y2 month lead precip. fcsts

ROC area: Precipitation anomalies in the upper tercile
Fortnight 2: Sep, Oct, Nov forecast start months. Hindcasts: 1980-2006

SON m24abc Fortnight 2
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Reliability and resolution

Reliability:  correspondence  between  forecast
probabilities and observed relative frequency (e.g. an
event must occur on 30% of the occasions that the
30% forecast probability was issued)

Resolution: Conditioning of observed outcome on the
forecasts

Addresses the question: Does the frequency of
occurrence of an event differs as the forecast
probability changes?

f the event occurs with the same relative frequency
regardless of the forecast, the forecasts are said to
nave no resolution

Forecasts with no resolution are useless because the
outcome is the same regardless of what is forecast




Brier Score decomposition (Murphy, 1973)

Murphy A.H., 1973: A New Vector

B S p— Z (pk —_ 0 K ) 0 S B S S 1 Partition of the Probability Score. J. of

App. Meteorol. and Climatol. 12(4),
n k=1 595-600.

ZN (pl—o) ——ZN(O —0) +0(l 0)

Rellablllty Resolutlon Uncert
_ _ 1
:p(01‘pi)_ Zok 0= n—ZN
1 keN;

=1,.../=11:p,=0,p, =0.1, p, = 0.2,...,pm = 0.9,p“: 1
Pk: forecast probabilities

Oy: binary observations
n: number of (py, 0y) pairs
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Reliability diagram

Event: SST>0
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Reliability diagram

Perfectly reliable: Rel=0
5081 Has no resolution: Res=0
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Example of how to construct a reliability diagram
Sample of probability forecasts:

22 years x 3000 grid points = 66000 forecasts
How often the event (T>0) was forecast with probability p,?

Forecast
Prob.(p)

/\ ‘ 100%

0 90%

AN

10%
0%

#

Fcsts.
N

8000
5000
4500

5500
/7000

“Perfectfcst.”

OBS-Freq.(0G;)
8000 (100%)
4500 ( 90%)
3600 ( 80%)

550 ( 10%)
0( 0%)

Courtesy: Francisco Doblas-Reyes

“‘Realfcst.”
OBS-Freq(0,)
7200 (90%)
4000 (80%)
3000 (66%)

800 (15%)
700 (10%)
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Example of how to construct a reliability diagram

Sample of probability forecasts:
22 years x 3000 grid points = 66000 forecasts
How often the event (T>0) was forecast with probability p,?

Forecast # “Perfectfcst.” “Realfcst.”
Prob.(p) Fcl\S;tS- OBS-Freq.(;) OBS-Freq(0;) 100
100% 8000  8000(100%) 7200 (90%)
90% 5000 4500 (90%) 4000 (80%) 'S
80% 4500 3600(80%) 3000 (66%) ©
LL
0
al
O
0o 5
10% 5500 550 ( 10%) 800 (15%) FC-Prob.(pi)

0% 7000 0( 0%) 700 (10%)

Courtesy: Francisco Doblas-Reyes 2



Seasonal forecast example:

1-month lead MSLP fcsts for DJF
GLOSEAS5 Hindcast Probabilistic skill

MSLP in N. Atlantic in upper and lower tercile
Reliability ROC area
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Monthly forecast example:
2-day lead 2mT fcsts for day 2-29 mean

< Reliagbility Diagram >

Event : T2m Anomaly Upper Tercile 2=29 day medn (V1403 vs JRASS)

BSS, Brel,Bres for 30 ysars (1881—2010) mem:5

Initial : DJF , Lead time : 2 day

Full{Red)=Reliability Dash{Green)=Forecast Frequency Brier Skill Scores x 100
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Two weeks forecast example:
Y2 month lead precip. fcsts

Precipitation anomalies inthe upper tercile
Fortnight 2: Sep, Oct, Nov forecast start months. Hindcasts: 1980-2006
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Seamless verification

Seamless forecasts-  consistentacross space/time scales

single modelling system or blended
probabilistic / ensemble

sub- seasonal decadal climate
O global seasonal prediction prediction change
S NWP prediction *
c—(g regional Vel
= short
T range : _ . . .
N local Ebert, E., L. Wilson, A. Weigel, M. Mittermaier, P. Nurmi,
nowcasts P. Gill, M. Gober, S. Joslyn, B. Brown, T. Fowler, and A.
Watkins, 2013: Progress and challenges in forecast
verification. Meteorol. Appl., 20, 130-139.

point — >
minutes hours days weeks months years decades
forecast aggregation time




Final remarks

 Clear need for attributes-based verification for a complete
forecast quality view

* Need for use more than a single score for more detailed
forecast quality assessment

* Sub-seasonal to seasonal verification is naturally leaning
towards the seamless consistency concept addressing the
guestion of which scales and phenomena are predictable

* As sub-seasonal to seasonal covers various forecast ranges
(days, weeks and months) it naturally allows seamless
verification developments



Additional references

* Mason, S, 2018: WMO Guidance on Verification of Operational
Seasonal Climate Forecasts.

» Coelho CAS, Brown B, Wilson L, Mittermaier M, Casati B, 2019:
Forecast verification for S2Stime scales. In: Robertson AW,
Vitart F (eds). Sub-seasonal to seasonal prediction: the gap between
weather and climate forecasting, Book Chap. 17, 15t edn. Elsevier,

Amsterdam, pp 337—361. (ISBN: 9780128117149.
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Thank you all for your attention!



